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1. INTRODUCTION

Let (.0, .51', f.i) be a finite measure space. For I ~ S < 00 denote by
L sen, .51', f.i) the system of all equivalence classes of .51'-measurable real
functions I: .0 ---> IR with IIIlls := rs Ills df.i II/s < 00.

For 0*-CcL I and fELl let f.iIUIC) be the set of all best 11111­

approximants of I in C, i.e., the set of all g E C with

It is known that even for nice C's best II III-approximants of j in C may not
exist, e.g., it may happen that C is a II Ill-closed linear subspace and
f.iIUIC)=0 for aijEC (see [11,p.100]). However, for many important
C's best II III-approximants always exist, e.g., for II III-closed convex lattices
C (see 171) or for finite dimensional subspaces C eLI' But in all these cases
best II III-approximants are rarely uniquely determined. Assume in the
following that C is a II Ill-closed convex set and f.i IU I C) *- 0. Many
investigations on L I-approximation are concerned with the problem of
characterizing "uniqueness" classes C, i.e., characterizing those C's allowing
unique best II Ill-approximants (see Chap. I, Sect. 3 of Ill]). We believe that
searching for uniqueness classes could become less important because it
turns out that in the class f.iIU I C) of all best II III-approximants exactly one
element is highly priviledged; it is among all best II III-approximants ofjin C
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the best II lis-approximant for all s near 1. More precisely there exists m I E
/11 (f I C) such that for each other g E /11 (f IC) we have

III - mIlls < III - glls for all sufficiently small s > 1.

This best II III-approximant m l seems to be a natural and reasonable choice
of a best II III-approximant of I in C. Moreover ml(f IC) has another
prominent property: it is the II Ill-limit of the uniquely determined best II Ils­
approximants of I in C for s 11. From this convergence property it follows
that the map I -+ m I(f IC) has some nice algebraic properties.

The concept presented here contains the following cases: If C is the set of
all constant functions and /1 is a probability measure then /11 (f I C) is the set
of all medians of I, and the natural best II Ill-approximant m I E /11 (f IC) is
the natural median ofI which was introduced in 191. For this special case it
was shown by a direct calculation in 19] that the best II II s-approximants ofI
in the system C of all constant functions converge to a median.

If c~ C cs/ is a afield and C is the system of all cwo-measurable functions
in L l then /11(f IC) is the set of all conditional medians of I given cwo (see
110,12]), and the natural best II III-approximant m l E/1I(f1 C) could be
termed a natural conditional median ofl given cwo'

The presented concept of natural best II II I-approximants can furthermore
be applied to all II III-closed lattices C eLI fulfilling aC + b c C for a ) 0,
b ER These C's are exactly the systems considered in the theory of isotonic
regression and approximation (see 12, 3, 4, 5, 8]): these systems allow the
treatment of statistical problems under order restrictions.

2. THE RESULTS

Now we formalize the concept of "natural" best ill-approximants
described in the Introduction.

I. DEFINITION. Let (fl" W, /1) be a finite measure space. Let I E:= L I and
CeLl be a II III-closed convex set. An element mJI IC) E /11(f I C) is
called a natural best II III-approximant ofI in C if for each g E /11 (f IC), g *
m I(f IC), there exists s( g) > 1 such that

for all 1 < s ~ s(g). (*)

Obviously there exists at most one natural best II III-approximant of I in C.
As, however, condition (*) is a strong additional approximation property for
a best II III-approximant, it seems doubtful whether a natural best II 11,­
approximant exists in non-trivial cases. Condition (*) can--except for the
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case of unique best II Ill-approximants-never be fulfilled if III - g lis = ex)

for s > I, g E fJ I U I C). Therefore we will assume in the following that

and

Theorem 2 shows that these assumptions alone guarantee the existence of a
natural best II III-approximant of I in C.

If s > I and C c L, is a II 1I,-c1osed convex set it is well known, that for
each IE L, there exists a unique best II Ii I-approximant of I in C; denote it
by fJ,U I C).

2. THEOREM. Let (fl,"·/.fJ) be a finite measure space and
C eLl (fl, .cd' ,fJ) a II Ill-closed convex set. Then lor each I ELI +- with 0 *
fJ I U I C) cL

'
"1 we have

(i) there exists Q natural best il I-approximant of I in C. say
mIUIC).

(ii) mlU I C) is the unique best I! I-approximant oIl in C minimizing
.I'lf - glln II - gl dfJ among all best II I-approximants g oIl in C.

(iii) ,u,U I C n L,) converges with s 11 strongly in L I to mlU'! C).

Proof Let D := fJIU! C) be the set of all best II III-approximants of I in
C. Since I ELI 4 • DeL I, and,u I,;y' is a finite measure, for each g E D
there exists s( g) > I such that f, gEL, for all I ~ s ~ s( g). Hence

ffJ.(s) := I II - g , d,u E for 1 ~ s ~ s(g). g ED. (I)

Since D is the set of best !I i! ,-approximants of I in C we have

for all g, h E D. (2)

We prove that there exists go ED with

for each g E D, g =/=. go' (3 )

where ffJ~(I)=(djds)ffJg(s)l, I' Then (2) and (3) imply for eachgED with

g * go that

for sufficiently small s > I; i.e., go is a natural best Ii Ill-approximant off in
C. Thus to prove (i) it remains to prove (3). To this aim we give at first an
explicit expression for ffJ;O), gED. Since (djds)II-gl'=II-gl'
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In If - gl:) -lie for all s:) 1 we obtain from (1) and the finiteness of.ul cc;1'

that sup,(s(sll(dlds) If - glSI E L] if s] <s(g). Hence we can int(:rchange
integration and differentiation according to the Lebesgue theorem and obtain

<p;(I) = j" if - glln If - gl d.u E IP, gED. (4 1

Let f1>(x) = x In x for x > 0 and f1>(0) = O. Denote by M the set of all hE D
such that

ff1>(lf-hlld,u= inf j"f1>(lf-gl)d,u=:aE
• XED .

To prove (3) and hence (i) and (ii), it therefore remains to show according to
(4) that M contains exactly one element.

At first we show that M"* 0. Let gil E D with f f1>(lf - gill) d.u ~IIEi\ a be
given. Since f1>(x)lx --->x~oc 00 and f1> is bounded from below, we obtain that
If - gil I, n E IN, and hence gil' n E IN, is uniformly integrable. Therefore
there exists a goEL, and a subsequence gil' nEIN" with gll-.... IIEN

1
go

weakly in L ,. Since D is a convex and II II,-closed set, DeL, is weakly
closed and hence go E D. Since f - gil --->IIEN f - go weakly and

. " I

I If - gill d,u =.1 If - go Id.u, we obtain from Lemma 8 that

weakly. (5 1

Since f1> is convex and continuous on I = 10, 00 l, we obtain from (5)
according to Lemma 6

j"f1>(lf-gol)d.u~ lim rf1>(lf-glllld,u=a.
nE rt\iJ

(6 1

As go ED we obtain from (6) that M"* 0. To prove (i) and (ii) therefore it
remains to show

implies (7 )

We show at first that

,u i g, < f < g2 f = 0,

Let B = i g, < f < g2f. Then we have

(8 )
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where" <" holds on B. Hence fJ(B) > 0 implies

Since gl' g2 E D =fJl(f I C) c C and 1(gl + g2) E C by the convexity of C,
(9) yields a contradiction. Therefore fJ 1g I < I < g2 f = fJ(B) = 0; by
symmetry fJ 1g 2 < I < g I f = O. Hence (8) holds. As (/J: IP I -> iP is strictly
convex we have

if bl . b2~ a or bl , b2~ a, where" <" holds if additionally b l * b2. Using (8)
we may apply for fJ-a.a. w E Q relation (10) to a = I(w), b I = g I (w) and
b2 = g2(W). Therefore we obtain fJ-a.e.

where" <" holds on the set 1g I * g2}' If fJ 1g2 * g2 f > 0, integration of (II)
yields, as (/J(li - gil) E L 1 by (4), that

. .

I (/J(II -1(gl + g2)1) dfJ < 11 (/J(II - gl i) dfJ + 1.1 (/J(II - g21) dfJ· (12)

As gl.g2EMcD and D=fJI(fIC) is convex, we obtain 1(gl + g2)ED.
Since g I' g 2 E M, (12) yields a contradiction. Hence g I = g 2 fJ-a.e .. i.e., (7)
is shown. Hence (i) and (ii) are proven.

It remains to prove (iii). As C is convex and II Ill-closed, 0 *fJl(f IC) c C
and as fJ I (f i C) eLI + we obtain for s near by 1 that 0 * C n L s is convex
and II lis-closed. As IE L, for s near by I, the best lis-approximant
,u,(f IC n L J ofI given C n L, exists and is uniquely determined. Let s n 11
and put gn:=,u,,,(f CnL,) and m l :=ml(fIC). We prove gn->nE m l

strongly with the help of the following three steps.

lim 1(/)(1/- gnlJdfJ< I (/)(I/-m l l)dfJ.
nE . ¥

(13)

Assume that (13}-( 15) are proven. Then (15), (14) and Lemma 8 imply
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I/-gnl--->nEi'Jlf-m,1 weakly. Hence (13) implies I/-gnl--->nEi'Jlf-mll
strongly according to Lemma 7, whence (15) and Lemma 9 imply m, - gn =

1- gn - (f - m,) --->nEi'J °strongly, i.e., (iii).
To (13): By the mean value theorem

X
s -x

cP(x) = x In x <--­
s-I

for x ~ 0, s> I

and hence

cP(11 _ gnl) <II - gnl
sn

~ ~f - gnl .
n

(16 )

Using that gn = IJ s (f I C II L s ) E C and m l E IJJI IC), we have
n n

and

rII - mIl dIJ <JII - gnl dIJ·

Then integration of (16) yields

With n ---> 00, we obtain from (17) and (4) relation (13).
To (14): Since gn E C and C is weakly closed we have go E C.
Let h E IJ,(f I C) C Ll+ be given. Asl - gn --->nEif" f - go weakly we have

(18 )

As go E C this implies go E IJ,(f I C). Therefore we may choose h= go in
(18) and obtain JII - gn IdIJ --->nEiI','l JII -- gol d/l.

To (15): According to (13), if - gnl, n E IN, and hence gn' n E IN, is
uniformly integrable. Hence to each subsequence N, c IN there exist a subse­
quence N z c IN and go E L I such that gn --->nEiI'..2 go weakly. It suffices to prove
that go = mi' By Lemma 6 and (13) we have

rcP(l/-gol)d.u< lim rcP(lf-gnl)d.u<rcP(lf-m,l)d.u. (19)
. n E"'.i 2 ~ •

As go E IJ, (f IC) by (14), relation (19) implies go = m, according to (ii).
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Now we show that the condition 0 * Ii I (f I C) eLI + used in Theorem 2,
is fulfilled in important cases. The results of the following Lemma 3 were
proven in 171.

3. LEMMA. Let (.0, ,crt, Ii) be afinite measure space and 0 *CeLl be a
III-closed lattice. Then we have lor all I, gEL I that

(i) 0 * lil(f I C) has a minimum and a maximum, say lil(f I C) and
iil(f I C), -

(ii) I~ g=>~I(fIC)~~I(gIC);iil(fIC)~iil(gIC).

Proof (i) follows from Theorem 14 of 171, (ii) follows from Theorem 18
of 171.

4. PROPOSITION. Let (.0, ,crt, Ii) be a finite measure space and 0 *CeLl
be a 11 III-closed lattice with aC + be C lor a? 0, bE R Then 0 *
III (f i C) eLI t lor each I ELI + •

Proof Let I E L, for some s > I. According to Lemma 3(i) and (ii) it
suffices to show that lil(f I C) E L, and iil(f I C) E L,. For each g ELI let
Tg := iii (g I C) ELI' Then 1': L 1-+ L I is a monotone operator according to
Lemma 3(ii). Furthermore~using aC +be C for a? 0, b E P~it is easy to
see that T(ag + b) = a Tg + b for a ? 0, b E iH. These properties of l' imply
that

(TIJ'i)' ~ T(I/') for IEL, (20)

(compare for instance the proof of property (P.7) of 18]). As III' E L I we
have 1'(1/1') ELI whence (20) implies iil(IIII C) = T(III) E L,. Since also
-C = i-c: cEq is a :1 It I-closed lattice with a(-C) + b c - C for a ? O.

bE ,we also obtain iil(l/li-C)EL,. As lil(-giC)=-IlI(gl-C) we
obtain using Lemma 3(ii) that

-iii (ill 1-C) = ,ul(-l/i t. C) ~ Ii 1(/1 C) ~ iil(/ i C) ~ iil(IIII C).
- -

As iii (III I-C), iil(1/11 C) E L, this implies ~I(f IC), iil(/ I C) E L,.

If 0 * CeLl is a II III-closed lattice with aC + b c C for a? 0, bE IH.
then according to Lemma 7.1 of 18] the set C is convex and there exists a 0­

lattice Y c .c/ such that C = L I (Y). Hence C is the system of all
equivalence classes of integrable functions which contain an Y;-measurable
function. These C's are exactly the systems considered in the theory of
isotonic regression and approximation (see 12, 3, 4, 5,8]). Proposition 4
shows that for these C's the assumption 0 * Ii I (I I C) eLI + is fulfilled.
Since C II L, = L s(5zf/) in this case the best II lis-approximant lis(f IC II L,)
of I in C II L, is the element 11;1 introduced in [81. Using the properties of
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I-/:f proved in [8] one easily obtains from Theorem 2(iii) the following
algebraic properties of Proposition 5 for f --> m I (f I C). (The assumption in
[81 that P was a probability measure instead of a finite measure does not
matter. )

5. PROPOSITION. Let (n, s/,p) be a finite measure space and ~'-=I= C c
L,(n, ,w,p) be a II III-closed lattice with aC + b c C for a ~ 0, bE R Then
for eachf E L't the natural best II Ill-approximant off in C, m,(f [C) exists
and the map f --> m, (f I C) has the following properties.

(i) m,(·IC)IL II is idempotent.

(ii) ml(·1 C) I Lit is monotone.

(iii) m,(af+bIC)=am,(fIC)+bfora~O,bE fEL lt .

(iv) Let f/J: 1--> IT' be a non-decreasing continuous and convex
function on a closed finite or infinite interval!. If f(n) eland j~

f/J 0 f ELI, ' then

f/J 0 (ml(f I C» 0;; ml(f/J 0 f I C).

(v) Im,(f I C)I 0;; max(m,(lfll C), ml(lfll ~C».

(vi) In 1(. I C) maps L r into L Jor each r > I.

ff furthermore -C c C, then additional~v

(vii) m,(g' f I C) = gml(f I C) for bounded functions g E C and
f E L I _·

(viii) m,(g + f I C) = g + mJf I C) for bounded functions g E: C and
fEL, ..

(ix) The function f/J in (iv) need only be continuous and con~ex.

Proof According to Proposition 4 we have 0 -=1= PI(f I C) eLI + for all
f ELI t • Hence according to Theorem 2, ml(f I C) exists and belongs to C,
whence m, is idempotent, i.e., (i) holds. According to the remarks above
there exists a a-lattice 5// such that C n L, = L,(Y;) and Ps(f I C n L,) =
p{l According to Theorem 2(iii) there exists a sequence sn 1 I such that
p':;(f) converges p-a.e. to ml(f I C). Hence (ii) follows from (2.8) of [81.
Property (iii) follows from (2.1) and (2.2) of [81. Property (iv) follows from
property (P.14) of 181. Property (v) follows from (P.12) of [81 using that
--C = L 1(:1}

Ad property (vi): according to (v) we may assumef ~ 0. We remark that
(vi) does not directly follow from (iv), applied to f/J(t) = t r

, since (iv) is
applicable only for f with fr E L, +. We shall show that for I < s ( 2 and
so;;r

(21 )
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From (21) we obtain (vi) using the Fatou lemma and Il snU I C) -->"E
m I U I C) Il-a.e. for some appropriate sequence s" 1 I. Since according to
(2.9) of 18) the operator Il'{'(f) is monotone continuous, we may assume that
f is bounded. U sing the convexity inequality (P.I4) of [8] for the operator
Il;U) and the inequality a'-I ~ 2 2

- sb s
1 - (b - a)~ if a, b:) 0, I < s ~ 2

(see Lemma 7.2 of [8 I), we obtain

= 22 sir dP,

where the last equality follows from (2.5) of [81.
Since -C c C implies that :./ is a a-field properties (vii), (viii) and (ix)

follow from the corresponding properties of Il sU I C).
In the following we prove four lemmas which were needed in the proof of

Theorem 2. A special case of Lemma 6 was proved in [61. Lemma 7 may be
of independent interest.

6. LEMMA. Let (D, ,y', 11) be a finite measure space and I c be a finite
or infinite closed interval. Let h" E L\(Il) with h,,(D) c 1, n E iN u := i'\ U jOl,
and C/J: 1 --> be a convex and continuous function. Then h" -->" E\ hu weakly
in L 1 implies J C/J 0 ho dll ~ lim"E" J C/J 0 h" dll.

Proof Since C/J is convex and h"EL l we have .IC/J o h"dll>-oo for

n E ~Ju' W.l.g. a := lim"E'" JC/J 0 h" dll < 00 and I C/J 0 h" dll-->"E a. Let
Uk 1a and put Ck := {gEL l : g(D)cl and J C/J(g)dll~akf. It suffices to

prove that Ck is weakly closed for all kEN. As Ck is convex, Ck is weakly
closed if it is strongly closed. Let gIl E Ck with gIl -+"E', gu strongly and
w.l.g. g"-->"E~, gu II-a.e.; then gu(D) c I and C/J 0 g"-->"E C/J 0 go II-a.e.; if
C/J 0 g", n E is uniformly integrable from below, i.e.,

for 17 --> - OCJ, (22)
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suffices to prove (22). As <P(x);) ax +b for some a, bE !R we have for each

/7 < 0

O;)j' C/Jogndf.l;)aj' gndf.l+bf.l{C/Jogn<'I/}' (23)
-1<Pog n >;;7)! -(<Pog n>;;7)!

As gn' n E 1l\J, is uniformly integrable and <P is convex, (23) implies (22).

7. LEMMA. Let (12, 'c:/,f.l) be a finite measure space and Ie H a]7nite or
infinite closed interval. Let hnEL1(12"c:/,f.l) with hn(12)cl, nEN o' and
C/J: I ---+ iF? be a strictly convex and continuous function. Then hn-.... nEN ho
weakly in L 1 and lim nEN JC/J(h n) df.l <, JC/J(ho) df.l E IR imply hn -->nE hI)
strongly in L 1 •

Proof As hn ---+nEN ho weakly, hn, n E IN, is uniformly integrable. Hence
it suffices to prove that hn converges in measure to ho. Since hn converges to
ho weakly, it suffices to prove that hn , n E is Cauchy-convergent in
measure. Assume indirectly that hn , n E IN, is not Cauchy-convergent. Then
there exists Co > 0 and a subsequence gk = h

nk
such that

for all k E 21N. (24 )

Since gk' k E 1I\i, is uniformly integrable we have SUPkE N J 1 gk I d,u < 00.

Hence by the Markoff inequality there exists ao > 0 such that

for all k E Hf.l{W: Igk(w)1 > aof <, co/2

From (24) and (25) we obtain

f.l{w: I gk(w)l, I gk+l(W)1 <, ao,

Igk(W)- gk+l(w)I;)£o};)co

(25 )

for all k E 21N. (26)

Since C/J is strictly convex and continuous and since I is a closed interval, we
have

(0:= inf 1+ (C/J(x) + C/J(y)) - C/J (''"; y):

X,YEI,IXI,IYI<,ao,lx-YI;)£o~>0. (27)

As gk---+kENhO weakly in LI' we obtain Hgk+ gk+I)---+kENhO weakly in L 1

and hence by Lemma 6

- -I C/J(ho)df.l<, lim I C/J(Hgk+ gk+l))df.l.
- kE,\ •

(28)
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From Lemma 6 and our assumption we obtain J r/J(gk)dll-+kE "
,I' r/J(h o) dll E IP. As r/J is convex, this implies

(29)

Now (28) and (29) imply

On the other hand, (26) and (27) imply

for all k E 211\

and we obtain a contradiction.

8. LEMMA. Let (D, ,':/,11) be a finite measure space and hnE L 1(1l), n E
Il'~ U jOf. Then hn -> ho weakly in L 1 and JIhnl dl1-+ nE JIhol dl1 imply Ihnl-+
IhoI weakly in L I •

Proof Let A E ,0'/ be given. Then hn14 -+nEI-. ho I A weakly and h" I T -+ IlE
ho iT weakly. Therefore

I Ihol dl1 ~ lim I Ih,,1 dl1,
. A "EI-. "A

and we have

Uhol dll ~ lim Uh,,1 dl1
~A "EN'A

(30)

~ J
A

Ih,,1 dl1 = ~i~ UIh,,1 dll- .lT 1hni dill

=jlholdll-lim Uhnldl1~llholdll.
, nEN'A ~A

Together with (30) this implies L Ih,,1 dl1-+ L ]hol dl1. As this holds for all
A E "el we obtain Ih"l-+ Ihol weakly.

9. LEMMA. Let (D,'¥',Il) be a finite measure space and hnE L 1(11),
nEit'J o' Then hn-+nEI-.hO weakly in L 1 and Ihnl--->nE ihol strongly in L 1

imply hn-+"E ho strongly in L I'
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Proof Let Bn=jho<O<hn}, Cn={hn<O<hof and An=BnUCn.
Then

1_ Ihn- hoId,u = 1'_ II hnI- IhoII d,u ~ r II hnI-I hoII d,u~ O.
. A'J .' An .

Hence it suffices to prove that

I Ihn - hoi d,u = I (Ihnl + Ihol) d,u~ O.
• An·'An

Our assumptions imply that

(31 )

h; --> h(j weakly.
nE rN

(32)

We obtain from (32) that

and

Hence

I Ihnl d,u-~ O.
. An

As

(33) implies

I· IhoId,u ------> O.
nEN

.' An

Now (33) and (34) imply (31).
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