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1. INTRODUCTION

Let (2, %,u) be a finite measure space. For 1< s < oo denote by
L.(2, 57/ ,u) the system of all equivalence classes of % -measurable real
functions f: 2 - R with || f]|, := [[ | f]* du|"* < .

For @#CcL, and f €L, let g,(f|C) be the set of all best || ||,-
approximants of fin C, i.e., the set of all g & C with

I/ — gl =inf{ll/ = hl,: he C}.

It is known that even for nice C’s best || ||,-approximants of / in C may not
exist, e.g., it may happen that C is a | |,-closed linear subspace and
u4,(f1C)=@ for al f & C (see [11,p. 100]). However, for many important
C’s best || ||,-approximants always exist, e.g., for || ||,-closed convex lattices
C (see |7]) or for finite dimensional subspaces C c L,. But in all these cases
best || |l,;-approximants are rarely uniquely determined. Assume in the
following that C is a || ||,-closed convex set and u,(f|C)+ @. Many
investigations on L, -approximation are concerned with the problem of
characterizing “uniqueness” classes C, i.e., characterizing those C’s allowing
unique best || ||,-approximants (see Chap. I, Sect. 3 of [11]). We believe that
searching for uniqueness classes could become less important because it
turns out that in the class 4,(f | C) of all best || ||,-approximants exactly one
element is highly priviledged; it is among all best || ||,-approximants of f'in C
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the best || ||,-approximant for all s near 1. More precisely there exists m, €
u,(f | C) such that for each other g € u,(f | C) we have

lf=mll, <If— gl for all sufficiently small s > 1.

This best || [|,-approximant m, seems to be a natural and reasonable choice
of a best | |,-approximant of /' in C. Moreover m,(f|C) has another
prominent property: it is the || |{,-limit of the uniquely determined best || ||,-

approximants of fin C for s | 1. From this convergence property it follows
that the map f — m,(f | C) has some nice algebraic properties.

The concept presented here contains the following cases: If C is the set of
all constant functions and u is a probability measure then 4,(f | C) is the set
of all medians of f, and the natural best || ||,-approximant m, € g,(f | C) is
the natural median of f which was introduced in |9]. For this special case it
was shown by a direct calculation in [9] that the best || ||,-approximants of /
in the system C of all constant functions converge to a median.

If o, <% is a ofield and C is the system of all «/;-measurable functions
in L, then ¢,(f ] C) is the set of all conditional medians of f given .%/ (see
[10, 12]), and the natural best || |,-approximant m, € u,(f | C) could be
termed a natural conditional median of f given .+/.

The presented concept of natural best || [|,-approximants can furthermore
be applied to all || ||,-closed lattices C < L, fulfilling aC + b < C for a > 0,
b & 1. These C’s are exactly the systems considered in the theory of isotonic
regression and approximation (see |2, 3, 4, 5, 8]): these systems allow the
treatment of statistical problems under order restrictions.

2. THE RESULTS

Now we formalize the concept of “natural” best || ||,-approximants
described in the Introduction.

1. DEerINITION.  Let (82, .o/, 1) be a finite measure space. Let /' € L, and
Cc L, be a | ||,-closed convex set. An element m,(f|C)Eu,(f|C) is
called a natural best || ||,-approximant of f'in C if for each g€ u,(f | C), g #
m,(f| C), there exists s(g) > 1 such that

I =m0 <If—gl,  foral 1<s<s(g) )

Obviously there exists at most one natural best || ||,-approximant of fin C.
As, however, condition (*) is a strong additional approximation property for
a best | ||,-approximant, it seems doubtful whether a natural best || [,
approximant exists in non-trivial cases. Condition (*) can—except for the
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case of unique best || ||,-approximants—never be fulfilled if ||/ — g|l, = oo
for s > 1. g €u,(f | C). Therefore we will assume in the following that

feL,=UL,  ad g#u(flOcL,,.
s>l

Theorem 2 shows that these assumptions alone guarantee the existence of a

natural best || ||,-approximant of fin C.

Ifs>1and CcL,is a| |,-closed convex set it is well known, that for
each /€ L _ there exists a unique best || {|,-approximant of / in C; denote it
by u (/] C).

2. THEOREM. Let (Q,.w'.u) be a [finite measure space and
Cc L2, ,u)al ||,-closed convex set. Then for each f € L,, with &+
u(f|Cyc L, we have

(i) there exists a natural best || || ,-approximant of f in C. say
m(f1C).
(ily m,(f | C) is the unique best || i|,-approximant of [ in C minimizing

I|f—glin|f — gl du among all best || !|,-approximants g of [ in C.
(iii) u,(f | CNL,) converges with s | | strongly in L, to m(f | C).
Proof. Let D :=u,(f1C) be the set of all best || ||,-approximants of f in

C. Since f€lL,,.Dcl,, and u|.% is a finite measure, for each g & D
there exists s(g) > I such that f, g€ L_for all | <5< s(g). Hence

o) =1/~ g du€r for 1<s<s(g)r geD. (1
Since D is the set of best || || ,-approximants of fin C we have
o (1)=g,(1) for all g, he D. (2)

We prove that there exists g, € D with

@g (1) <ou(l) foreach ge D, g+ g,, (3)
where ¢,(1)=(d/ds)p,(s)|,.,. Then (2) and (3) imply for each g € D with
g # g, that

_l' /= 8l du=0,,(5) <ols)= _t. |/~ gl du

for sufficiently small s > 1: i.e., g, is a natural best || ||,-approximant of fin
C. Thus to prove (i) it remains to prove (3). To this aim we give at first an
explicit expression for ¢,(1), g€ D. Since (d/ds)|f—g|’=|/—¢gI
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In|f— g| > —1/e for all s > 1 we obtain from (1) and the finiteness of 4 |+
that sup, ., ,, I(d/ds)|f — gI’| €L, if s, <s(g). Hence we can interchange
integration and differentiation according to the Lebesgue theorem and obtain

w;(l)ZJ.lf—g\ln\f—gidueP, g€ D. (4)

Let @(x)=xInx for x > 0 and @(0) = 0. Denote by M the set of all A€ D
such that

| (S —hDdu=inf [@(f—ghdu=:ael

To prove (3) and hence (i) and (ii), it therefore remains to show according to
(4) that M contains exactly one element.

At first we show that M # @. Let g, € D with [ @(|f — g,|) du ., c». @ be
given. Since @(x)/x -, . oo and @ is bounded from below, we obtain that
|/ — g,y n€N, and hence g,, n €N, is uniformly integrable. Therefore
there exists a g, €L, and a subsequence g,, n € N,, with g,—, .\ g,
weakly in L. Since D is a convex and || ||,-closed set, D < L, is weakly
closed and hence g,€D. Since f—g,>,c\ f & weakly and
if—g.ldu=1[|f— g, du, we obtain from Lemma 8 that

S = &l IS — &l weakly. ()

Since @ is convex and continuous on /=0, 00), we obtain from (5)
according to Lemma 6

[ @0/~ ghdu< lim | @(f — g, du=c (6)

As g, € D we obtain from (6) that M = @. To prove (i} and (ii) therefore it
remains to show

g..8,EM implies g1 = &, (7)
We show at first that
g <S<gt=0. wuig,<f<g =0 (8)
Let B=1{g, < f < g,}. Then we have

if‘%(g1+gz)’é%‘f_gll‘}'%!f_gzis
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where “<” holds on B. Hence u(B) > 0 implies

(1S = 4(e + gl du< § w1 - glde )

Since g,, £, €D =u,(/|C)=C and i(g, + g,) € C by the convexity of C,
(9) vyields a contradiction. Therefore u{g, </ < g,} =u(B)=0; by
symmetry u{g, < f < g,}=0. Hence (8) holds. As @: - is strictly
convex we have

P(la— (b, + b)) <39P(ja— b)) + 19(la — b,]) (10)

if b.b,<aorb,,b,>a, where “ <™ holds if additionally b, # b,. Using (8)
we may apply for y-a.a. w € Q2 relation (10) to a = f(w), b, = g,(w) and
b, = g,(w). Therefore we obtain u-a.e.

(/308 + &) <3PS — 8. ) +12(S — .. (11)

where “* < holds on the set { g, + g,}. If u{g,+# g,} > O, integration of (11)
yields, as @(// — g,|) € L, by (4), that

Ddu.  (12)

P

[ @0/ —3g + g du < b [ @S~ gD du+ 1

As g,.g.EMc D and D=u,(f|C) is convex, we obtain (g, + g,) € D.
Since g,, g, € M, (12) yields a contradiction. Hence g, = g, u-a.e., i.e., (7)
is shown. Hence (i) and (ii) are proven.

It remains to prove (iii). As C is convex and || ||,-closed, @+ u,(f |C)=C
and as 4,(f|C)< L,, we obtain for s near by 1 that @ CM L is convex
and || |,-closed. As f €L, for s near by 1. the best | ||,-approximant
u (S| CNL,) of fgiven C O L, exists and is uniquely determined. Let s, | 1
and put g,:=u, (S1CNL) and m,:=m,(f|C). We prove g, —=,c,m,
strongly with the help of the following three steps.

lim [ (.~ g, dua < | @(f —m,)du. (13)

gn o 8y weakly implies g, € u1,(f | C)

and | S gl i —, Hf*go\du, (14)
8n o My weakly. (15)

Assume that (13)-(15) are proven. Then (15), (14) and Lemma 8 imply
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|/ = &al ~wen|f — m,| weakly. Hence (13) implies [/ — g, =nen |/ —m,|
strongly according to Lemma 7, whence (15) and Lemma 9 imply m, — g, =
S—g,— (f —m;)—,cn 0 strongly, ie., (iii).

To (13): By the mean value theorem

3

P(x)=xInx< s:lx for x>0, 5> 1
and hence
f_ n b — f" En
07— g,y LB T8l (16)
Using that g, =y, (f|CNL,)E Cand m, €u,(f|C), we have
[1/ = gl du< [1f = m,|" du
and
1 =mildu< |17~ g, du.
Then integration of (16) yields
| (f = gD du S — [ (f =" =1/ = m])du. (17)

With n - oo, we obtain from (17) and (4) relation (13).
To (14): Since g, € C and C is weakly closed we have g, € C.
Leth€u,(f|C)=L,, begiven. As f — g,~,., f — &, weakly we have

I =gl < lim 17~ g, < Jim 1f = g, < Tim 1f = gl
< T 7= hl, = s - Al (18)

As gq € C this implies g, € u4,(f | C). Therefore we may choose #= g, in
(18) and obtain [ |f ~ g,|dit—=,en, [ |/ — g0l du.

To (15): According to (13), |/ — g,/, nEN, and hence g,, n €N, is
uniformly integrable. Hence to each subsequence N, © N there exist a subse-
quence N, =N and g, € L, such that g, —, ., g, weakly. It suffices to prove
that g, = m,. By Lemma 6 and (13) we have

v|"¢(|f—go\)du<llm | @Uf = gD du< | @Uf~mdu.  (19)

As g, € 1, (/] C) by (14), relation (19) implies g, = m, according to (ii).
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Now we show that the condition @ # u,(f | C) < L,, used in Theorem 2,
is fulfilled in important cases. The resuits of the following Lemma 3 were
proven in |7].

3. LEMMA. Let (2, %/, u) be a finite measure space and @+ C < L, be a
| |l,-closed lattice. Then we have for all f, g € L, that

() @#u,(f|C) has a minimum and a maximum, say u,(f | C) and
a,(10),
(i) f<g=>u(/1O)<u(glC)a(f1C)<i(g|C)

Proof. (i) follows from Theorem 14 of [7], (ii) follows from Theorem 18
of |7}

4. PROPOSITION. Let (2, o7, u) be a finite measure space and @+ C < L,
be a | ||,-closed lattice with aC+b< C for a0, bER. Then @+
u(fiCycL,, foreachfeL,,.

Proof. Let f € L, for some s > |. According to Lemma 3(i) and (i) it
suffices to show that u,(f1C)e L, and g, (f|C)E€ L,. Foreach g€ L, let
Tg:=i,(g|CYEL,. Then T: L, ~ L, is a monotone operator according to
Lemma 3(i1). Furthermore—using aC + b < C for a > 0, b € R—it is easy to
see that T(ag + by =a Tg+ b for a >0, b € <. These properties of T imply
that

(i <mifn for feL (20)

(compare for instance the proof of property (P.7) of [8]). As |[f|'€ L, we
have T(|f|°) € L, whence (20) implies 4,(|/1| C)=T(f]) € L,. Since also
~C=|—c:c€C}is a | |l,-closed lattice with a(—C)+ b — C for a > 0.
bET:, we also obtain #,(|fI|-C)E L. As u(—giC)=—u,(g|—-C) we
obtain using Lemma 3(ii) that

(SO =u (IO < (S 1O <O <A (ST C).

As (| f11=C). @ (|f11C) € L, this implies u,(f | C), 4,(S 1 C) € L.

If g+CcL,is al |,-closed lattice with aC+b<C for a 20, b€ K.
then according to Lemma 7.1 of |8] the set C is convex and there exists a o-
lattice ¥ <.%" such that C=L (). Hence C is the system of all
equivalence classes of integrable functions which contain an #-measurable
function. These C’s are exactly the systems considered in the theory of
isotonic regression and approximation (see |2, 3. 4, 5, 8]|). Proposition 4
shows that for these C’s the assumption @+ u,(f|C)cL,, is fulfilled.
Since CM L, =L (%) in this case the best || ||;-approximant u(f|CNL,)
of fin C ML, is the element uZf introduced in [8]. Using the properties of
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u?f proved in |8]| one easily obtains from Theorem 2(iii) the following
algebraic properties of Proposition 5 for f - m,(f | C). (The assumption in
|8] that 4 was a probability measure instead of a finite measure does not
matter. )

5. PROPOSITION. Let (2, 7, u) be a finite measure space and @+ C
L2, ,u) be al ||,-closed lattice with aC +b< C for a>0, b€ R. Then
Jor each f € L, the natural best || ||,-approximant of fin C, m,(f | C) exists
and the map | — m (f | C) has the following properties.

(i) m(-|C)|L,, isidempotent.

(ity m,(-|C)|L,, is monotone.

(iit) myaf +b|Cy=am (f|C)+bfora>0,bel, fEL,,.

(iv) Let ®:1-F be a non-decreasing continuous and convex
Junction on a closed finite or infinite intervall. If f(2)c ] and [,
Pofecl,, . then

Do (m(f|C)<m(Po f|C)

v) [ (f] O < max(m(|/1]C)m,(f]] =C)).
(vty m(-|C) maps L, into L, for each r > 1.

If furthermore —C < C, then additionally

(vity m(g-f1C)=gm(f|C) for bounded functions g& C and
SEL, .

(viti) m(g+ f1C)= g+ m(f|C) for bounded functions g €& C and
JEL,, .

(ix) The function @ in (iv) need only be continuous and convex.

Proof. According to Proposition 4 we have @+ u, (/| C)c L,, for all
S €L,,. Hence according to Theorem 2, m,(f | C} exists and belongs to C,
whence m, is idempotent, i.e., (i) holds. According to the remarks above
there exists a o¢-lattice & such that CNL =L (%) and u(f|CNL))=
uZf. According to Theorem 2(iii) there exists a sequence s, | 1 such that
47 (f) converges u-a.e. to m,(f|C). Hence (ii) follows from (2.8) of [8].
Property (iii) follows from (2.1) and (2.2) of [8]. Property (iv) follows from
property (P.14) of [8]. Property (v) follows from (P.12) of [8] using that
—C=L/(Z)

Ad property (vi): according to (v) we may assume f > 0. We remark that
(vi) does not directly foliow from (iv), applied to @(z)=1t", since (iv) is
applicable only for f with f" € L,,. We shall show that for 1 <s< 2 and
s<r

[ e N a2 [ /7 aP. @1
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From (21) we obtain (vi) using the Fatou lemma and u, (f[C) -,
m,(f | C) u-ae. for some appropriate sequence s, | 1. Since according to
(2.9) of |8] the operator ¢ (/") is monotone continuous, we may assume that
J is bounded. Using the convexity inequality (P.14) of [8] for the operator
u?(f) and the inequality @* ' <270 ' — (b —a)*Lifa, b>0, 1 <s<2
(see Lemma 7.2 of |8]), we obtain

I I#{(f)lrd,u:i (|#f(/‘)l’/’(s——l))s— 1 dy

g l I,u;/(fr“ - l))l.\ -1 d/l

5

g 225 l (fr,"(s l))s— t d,U . ‘ (‘f‘rr'(.\' - ',U:[(fr”“” I))):s/;;}, d,U

=25 T dP,

where the last equality follows from (2.5) of [8].

Since —C < C implies that %’ is a o-field properties (vii), (viii} and (ix)
follow from the corresponding properties of u (f | C).

In the following we prove four lemmas which were needed in the proof of
Theorem 2. A special case of Lemma 6 was proved in [6]. Lemma 7 may be
of independent interest.

6. LEMMA. Ler (£2,.w, 1) be a finite measure space and | < 2 be a finite
or infinite closed interval. Let h, € L,(u) with h, ()<, n€ N, :=NU {0},
and ®:1— 1 be a convex and continuous function. Then h,—, . h, weakly
in L, implies | @ o hy du <lim,_, [ @ o h, du.

Proof. Since @ is convex and h, € L, we have | @ o h,du > —oo for
neEN,. Wlg.a:=lim,.. |®ch,du<oo and |[@oh,du—,..a Let
a,| a and put C, :={g€L,: g(R)cI and | ®(g)du < a,}. It suffices to
prove that C, is weakly closed for all k € N. As C, is convex, C, is weakly
closed if it is strongly closed. Let g, € C, with g, —+,.- g, strongly and
w.lg g, nen & d-a.e; then g (2)c! and P o g, —, . Po g, y-ae.: if

@ o g, ne€ N, is uniformly integrable from below, i.e.,

net,

sup Do g, du| -0 for 7- —o0, (22)

e , (®og,<n)

then | @ o g,du<lim,., | Po g,du and hence g,€ C,. Therefore it

22onenN
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suffices to prove (22). As @(x) > ax + b for some a, b € R we have for each
n<0

0> bog,du>al g du+bu{®o g, <nh (23)

(Pog <1 {Pog, <)

As g,, n € N, is uniformly integrable and @ is convex, (23) implies (22).

7. LEMMA. Let (2,.o/, i) be a finite measure space and I — R a finite or
infinite closed interval. Let h, € L,(92, .+, u) with h,(2)c 1, ne€N,, and
@: 1> R be a strictly convex and continuous function. Then h,—,.\h,
weakly in L, and lim, | @(h,)du<| @(h)du€ R imply h,-,..h,
strongly in L.

Proof. As h,—, ., h, weakly, h,, n € N, is uniformly integrable. Hence
it suffices to prove that /4, converges in measure to A,. Since &, converges to
h, weakly, it suffices to prove that #,, n € N, is Cauchy-convergent in
measure. Assume indirectly that /., n € N, is not Cauchy-convergent. Then
there exists &, > 0 and a subsequence g, = £, such that

mlw: [ glw) — g, 1) > &} > 2¢, for all k€ 2N. (24)

Since g,, k€N, is uniformly integrable we have sup,., []g,|du < oo.
Hence by the Markoff inequality there exists a, > 0 such that

tlw: | g lw) > a,t < €y/2 for all k& N. (25)

From (24) and (25) we obtain

ulw: | g (), | g (@)l < aq,
@) — g (@) el >e,  forall KEN. (26)

Since @ is strictly convex and continuous and since / is a closed interval, we
have

. 1 _ X+ p\
v == inf 7(<D(x)+¢(y)) @( 5 )

x, yEL|x|yI<ag, |x— ¥ =€y >0. (27)

AS g, —penh, weakly in L, we obtain 3(g, + g, 1) 2xen fo Weakly in L,
and hence by Lemma 6

| @(ho) du < lim | D(H(gi+ 411)) i (28)
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From Lemma 6 and our assumption we obtain I @(g)du—, ..
b @(hy)du € . As @ is convex, this implies

| D8+ gae1) du

1
<3

| @lg)dut | Olg. )du—m | @) e (29)

ke
Now (28) and (29) imply
no= [ 131@(80 + P8 )|~ P8+ 8 ) di— 5 0.

On the other hand, (26) and (27) imply
T 2 €Yo for all ke 2N

and we obtain a contradiction.

8. LEMMA. Let (22,.«, u) be a finite measure space .and h, €L (u),ne
N {0}. Then h, —~ h, weakly in L, and | |h,| du—,c., | |h,| du imply |h,| -
| ho| weakly in L.

Proof. Let A € .+ be given. Then A, 1, -, ., Ayl weakly and &, 15—, ;.
h, 15 weakly. Therefore

| ol du< lim | (h,\du, | B\ du< lim | [h,[du (30)
A HEN v 4 1 neN v q
and we have
0 | Ukl da= T || Vo | 1oy s
nel g neN {. ST ]
= [ Vol da —tim | |, du <] {hol d
- neN . g v 4

Together with (30) this implies [, |k, du— |, || du. As this holds for all
A € &/ we obtain |h,| - |h,] weakly.

9. LEMMA. Let (02,.«,u) be a finite measure space and h, < L,(u),
nEMNy. Then h,—, . h, weakly in L and |h,|—,niho| strongly in L,
imply b, —,.. h, strongly in L.
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Proof. Let B,=1{h,<0<h,}, C,={h, <0<hy} and 4,=8,UC,.
Then

nemnN

| Vhy—holdu= | [i,] = ol de < [ [} = oll dit 0.

T

Hence it suffices to prove that

| V= holda=] (] 4+ h]) de 0 0 (31)

Ay

Our assumptions imply that

hi———hy weakly,  h, ——— h, weakly. (32)

We obtain from (32) that

o ldu=|  hidu—— |  h du=0

.|Bn} n‘ s »‘|h0<0) # nenN ,]”,0.1()) o 4
and

| Ahddu=]  hdu—| kg du=0,

S, g > 0) Dy >0)
Hence

JA || du ——— 0. (33)

As

[} |hn1dﬂ—J’4 ol dut| <[ [1hy| = o] dit — 0.
(33) implies

" Iho| du ——— 0. (34)
L |

"

Now (33) and (34) imply (31).
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